Copied to
clipboard

G = C3×C625C4order 432 = 24·33

Direct product of C3 and C625C4

direct product, metabelian, supersoluble, monomial

Aliases: C3×C625C4, C63.3C2, C6215C12, C6214Dic3, C62.144D6, (C3×C62)⋊7C4, C62.68(C2×C6), (C2×C62).27C6, (C2×C62).27S3, C6.28(C6×Dic3), (C32×C6).77D4, C3318(C22⋊C4), C6.39(C327D4), (C3×C62).50C22, C3210(C6.D4), (C2×C6).71(S3×C6), (C6×C3⋊Dic3)⋊6C2, (C2×C3⋊Dic3)⋊9C6, (C2×C6)⋊6(C3×Dic3), (C3×C6).73(C3×D4), C6.42(C3×C3⋊D4), C23.3(C3×C3⋊S3), C22.7(C6×C3⋊S3), C2.5(C6×C3⋊Dic3), (C3×C6).65(C2×C12), (C2×C6)⋊3(C3⋊Dic3), C32(C3×C6.D4), C6.24(C2×C3⋊Dic3), C223(C3×C3⋊Dic3), C2.3(C3×C327D4), C3211(C3×C22⋊C4), (C22×C6).33(C3×S3), (C32×C6).71(C2×C4), (C3×C6).70(C2×Dic3), (C3×C6).112(C3⋊D4), (C22×C6).11(C3⋊S3), (C2×C6).65(C2×C3⋊S3), SmallGroup(432,495)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3×C625C4
C1C3C32C3×C6C62C3×C62C6×C3⋊Dic3 — C3×C625C4
C32C3×C6 — C3×C625C4
C1C2×C6C22×C6

Generators and relations for C3×C625C4
 G = < a,b,c,d | a3=b6=c6=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c3, dcd-1=c-1 >

Subgroups: 756 in 332 conjugacy classes, 102 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C23, C32, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C22×C6, C22×C6, C33, C3×Dic3, C3⋊Dic3, C62, C62, C62, C6.D4, C3×C22⋊C4, C32×C6, C32×C6, C32×C6, C6×Dic3, C2×C3⋊Dic3, C2×C62, C2×C62, C2×C62, C3×C3⋊Dic3, C3×C62, C3×C62, C3×C62, C3×C6.D4, C625C4, C6×C3⋊Dic3, C63, C3×C625C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Dic3, C12, D6, C2×C6, C22⋊C4, C3×S3, C3⋊S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C6.D4, C3×C22⋊C4, C3×C3⋊S3, C6×Dic3, C3×C3⋊D4, C2×C3⋊Dic3, C327D4, C3×C3⋊Dic3, C6×C3⋊S3, C3×C6.D4, C625C4, C6×C3⋊Dic3, C3×C327D4, C3×C625C4

Smallest permutation representation of C3×C625C4
On 72 points
Generators in S72
(1 14 12)(2 15 10)(3 13 11)(4 22 20)(5 23 21)(6 24 19)(7 33 26)(8 31 27)(9 32 25)(16 30 34)(17 28 35)(18 29 36)(37 53 46)(38 54 47)(39 49 48)(40 50 43)(41 51 44)(42 52 45)(55 69 62)(56 70 63)(57 71 64)(58 72 65)(59 67 66)(60 68 61)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 36 13 17 10 30)(2 34 14 18 11 28)(3 35 15 16 12 29)(4 8 24 33 21 25)(5 9 22 31 19 26)(6 7 23 32 20 27)(37 54 48 40 51 45)(38 49 43 41 52 46)(39 50 44 42 53 47)(55 70 64 58 67 61)(56 71 65 59 68 62)(57 72 66 60 69 63)
(1 38 31 62)(2 40 32 64)(3 42 33 66)(4 63 16 39)(5 65 17 41)(6 61 18 37)(7 67 11 45)(8 69 12 47)(9 71 10 43)(13 52 26 59)(14 54 27 55)(15 50 25 57)(19 68 36 46)(20 70 34 48)(21 72 35 44)(22 56 30 49)(23 58 28 51)(24 60 29 53)

G:=sub<Sym(72)| (1,14,12)(2,15,10)(3,13,11)(4,22,20)(5,23,21)(6,24,19)(7,33,26)(8,31,27)(9,32,25)(16,30,34)(17,28,35)(18,29,36)(37,53,46)(38,54,47)(39,49,48)(40,50,43)(41,51,44)(42,52,45)(55,69,62)(56,70,63)(57,71,64)(58,72,65)(59,67,66)(60,68,61), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,36,13,17,10,30)(2,34,14,18,11,28)(3,35,15,16,12,29)(4,8,24,33,21,25)(5,9,22,31,19,26)(6,7,23,32,20,27)(37,54,48,40,51,45)(38,49,43,41,52,46)(39,50,44,42,53,47)(55,70,64,58,67,61)(56,71,65,59,68,62)(57,72,66,60,69,63), (1,38,31,62)(2,40,32,64)(3,42,33,66)(4,63,16,39)(5,65,17,41)(6,61,18,37)(7,67,11,45)(8,69,12,47)(9,71,10,43)(13,52,26,59)(14,54,27,55)(15,50,25,57)(19,68,36,46)(20,70,34,48)(21,72,35,44)(22,56,30,49)(23,58,28,51)(24,60,29,53)>;

G:=Group( (1,14,12)(2,15,10)(3,13,11)(4,22,20)(5,23,21)(6,24,19)(7,33,26)(8,31,27)(9,32,25)(16,30,34)(17,28,35)(18,29,36)(37,53,46)(38,54,47)(39,49,48)(40,50,43)(41,51,44)(42,52,45)(55,69,62)(56,70,63)(57,71,64)(58,72,65)(59,67,66)(60,68,61), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,36,13,17,10,30)(2,34,14,18,11,28)(3,35,15,16,12,29)(4,8,24,33,21,25)(5,9,22,31,19,26)(6,7,23,32,20,27)(37,54,48,40,51,45)(38,49,43,41,52,46)(39,50,44,42,53,47)(55,70,64,58,67,61)(56,71,65,59,68,62)(57,72,66,60,69,63), (1,38,31,62)(2,40,32,64)(3,42,33,66)(4,63,16,39)(5,65,17,41)(6,61,18,37)(7,67,11,45)(8,69,12,47)(9,71,10,43)(13,52,26,59)(14,54,27,55)(15,50,25,57)(19,68,36,46)(20,70,34,48)(21,72,35,44)(22,56,30,49)(23,58,28,51)(24,60,29,53) );

G=PermutationGroup([[(1,14,12),(2,15,10),(3,13,11),(4,22,20),(5,23,21),(6,24,19),(7,33,26),(8,31,27),(9,32,25),(16,30,34),(17,28,35),(18,29,36),(37,53,46),(38,54,47),(39,49,48),(40,50,43),(41,51,44),(42,52,45),(55,69,62),(56,70,63),(57,71,64),(58,72,65),(59,67,66),(60,68,61)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,36,13,17,10,30),(2,34,14,18,11,28),(3,35,15,16,12,29),(4,8,24,33,21,25),(5,9,22,31,19,26),(6,7,23,32,20,27),(37,54,48,40,51,45),(38,49,43,41,52,46),(39,50,44,42,53,47),(55,70,64,58,67,61),(56,71,65,59,68,62),(57,72,66,60,69,63)], [(1,38,31,62),(2,40,32,64),(3,42,33,66),(4,63,16,39),(5,65,17,41),(6,61,18,37),(7,67,11,45),(8,69,12,47),(9,71,10,43),(13,52,26,59),(14,54,27,55),(15,50,25,57),(19,68,36,46),(20,70,34,48),(21,72,35,44),(22,56,30,49),(23,58,28,51),(24,60,29,53)]])

126 conjugacy classes

class 1 2A2B2C2D2E3A3B3C···3N4A4B4C4D6A···6F6G···6CP12A···12H
order122222333···344446···66···612···12
size111122112···2181818181···12···218···18

126 irreducible representations

dim111111112222222222
type+++++-+
imageC1C2C2C3C4C6C6C12S3D4Dic3D6C3×S3C3⋊D4C3×D4C3×Dic3S3×C6C3×C3⋊D4
kernelC3×C625C4C6×C3⋊Dic3C63C625C4C3×C62C2×C3⋊Dic3C2×C62C62C2×C62C32×C6C62C62C22×C6C3×C6C3×C6C2×C6C2×C6C6
# reps121244284284816416832

Matrix representation of C3×C625C4 in GL6(𝔽13)

900000
090000
003000
000300
000090
000009
,
900000
030000
001000
000100
000010
0000012
,
100000
010000
009000
000300
0000100
000004
,
050000
800000
000100
0012000
000001
000010

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[9,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,10,0,0,0,0,0,0,4],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C3×C625C4 in GAP, Magma, Sage, TeX

C_3\times C_6^2\rtimes_5C_4
% in TeX

G:=Group("C3xC6^2:5C4");
// GroupNames label

G:=SmallGroup(432,495);
// by ID

G=gap.SmallGroup(432,495);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,365,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^6=c^6=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^3,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽